Please use this identifier to cite or link to this item: https://doi.org/10.1021/cs400621p
Title: Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound
Authors: Ashok, J.
Kawi, S. 
Keywords: biomass
hydrogen production
iron-alumina
nickel-iron alloy
toluene steam reforming
Issue Date: 3-Jan-2014
Citation: Ashok, J., Kawi, S. (2014-01-03). Nickel-iron alloy supported over iron-alumina catalysts for steam reforming of biomass tar model compound. ACS Catalysis 4 (1) : 289-301. ScholarBank@NUS Repository. https://doi.org/10.1021/cs400621p
Abstract: Iron-alumina-supported nickel-iron alloy catalysts were tested in a fixed-bed reactor for steam reforming of toluene as a biomass tar model compound. The influence of the calcination temperature of the iron-alumina support was also explored for the steam reforming reaction. Ni supported on an Fe2O3-Al2O3 support calcined at 500 C [NFA(500)] gave superior catalytic performance in terms of activity and stability over other catalysts. NFA(500) gave a toluene conversion of more than 90% for a period of 26 h with a H2/CO value of 4.5. According to XRD analysis, the Ni-Fe alloys were formed and stable throughout the reforming reaction. It was observed from XPS results that the surface of the reduced NFA(500) catalyst was enriched with Fe species, where the other catalysts were enriched with Ni species. These surface Fe species play the role of cocatalysts by increasing the coverage of oxygen species during the reforming reaction to enhance the reaction of toluene and suppresses coke formation. The presence of oxygen species in the reduced catalysts was confirmed by temperature-programmed surface reaction (TPSR) with toluene and water over NFA catalysts. A temperature-programmed oxidation (TPO) study on spent catalysts revealed that the NFA(500) and NFA(700) catalysts have an additional low-temperature oxidation peak at around 525 and 535 C, respectively, suggesting the presence of a higher amount of amorphous carbon compared with the NFA(900) catalyst. The presence of a low-temperature oxidation peak at 525 C for the NFA(500) catalyst is one of the reasons for its stable catalytic performance compared with other catalysts. © 2013 American Chemical Society.
Source Title: ACS Catalysis
URI: http://scholarbank.nus.edu.sg/handle/10635/89583
ISSN: 21555435
DOI: 10.1021/cs400621p
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

69
checked on May 20, 2018

WEB OF SCIENCETM
Citations

53
checked on Apr 23, 2018

Page view(s)

32
checked on May 18, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.