Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.memsci.2012.08.036
Title: Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising Β-Cyclodextrin
Authors: Askari, M.
Yang, T.
Chung, T.-S. 
Keywords: Dual layer hollow fiber.
Natural gas purification
Olefin/paraffin separation
Thermal cross-linking
Issue Date: 15-Dec-2012
Source: Askari, M., Yang, T., Chung, T.-S. (2012-12-15). Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising Β-Cyclodextrin. Journal of Membrane Science 423-424 : 392-403. ScholarBank@NUS Repository. https://doi.org/10.1016/j.memsci.2012.08.036
Abstract: In this study, thermally cross-linkable co-polyimide dual-layer hollow fiber membranes grafted with Β-Cyclodextrin for separation of CO 2/CH 4 and propylene/propane have been fabricated. In order to find the best spinning condition, the performance of hollow fiber membranes at various take-up velocities and outer-layer dope flow rates was investigated. The fiber membranes were thermally cross-linked at different temperatures and the performance of the fibers before and after silicon rubber coating was studied using CH 4, CO 2, propane and propylene. It was observed that permeances of all gases decreased with an increase in take-up velocity and outer-layer dope flow rate. Selectivities of the membrane with respect to the take-up velocity initially increased and after a take-up velocity value of 7.4m/min started to decrease. This up and down trend was attributed to the influence of elongational draw ratio and change in surface porosity of the membrane. Optimum take-up velocity and outer-layer dope flow rate for as-spun fibers were 7.4m/min and 0.5ml/min, respectively. These conditions resulted in CO 2/CH 4 selectivities of 6.22 and 14.3 before and after silicon rubber coating, respectively. The results demonstrated that thermal treatment improves membrane selectivities and decreases membrane permeances. The enhancement of selectivities can be a result of cross-linking and reduction in permeances due to densification of the hollow fiber membranes. Selectivities of thermally treated fiber membranes at 350°C were slightly higher than those of the precursor fibers and this improvement was more significant for membranes treated at 400°C. This enhancement demonstrates that cross-linking is more severe at 400°C. The best separation performance of the annealed and silicone rubber coated hollow fibers in this study has a CO 2 permeance of around 82GPU with a CO 2/CH 4 ideal selectivity of around 20 and a high C 3H 6 permeance of around 29GPU with a C 3H 6/C 3H 8 ideal selectivity of 15.3. It can also resist CO 2 induced plasticization until 25atm. It is believed that, with these gas separation and anti-plasticization properties, the newly developed membranes may have high prospective for natural gas purification and olefin/paraffin separation. © 2012 Elsevier B.V.
Source Title: Journal of Membrane Science
URI: http://scholarbank.nus.edu.sg/handle/10635/89571
ISSN: 03767388
DOI: 10.1016/j.memsci.2012.08.036
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

13
checked on Feb 14, 2018

WEB OF SCIENCETM
Citations

12
checked on Jan 23, 2018

Page view(s)

35
checked on Feb 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.