Please use this identifier to cite or link to this item: https://doi.org/10.1021/la060506g
Title: Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMQF-1
Authors: Jiang, J. 
Sandler, S.I.
Issue Date: 20-Jun-2006
Citation: Jiang, J., Sandler, S.I. (2006-06-20). Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMQF-1. Langmuir 22 (13) : 5702-5707. ScholarBank@NUS Repository. https://doi.org/10.1021/la060506g
Abstract: The adsorption and separation of linear and branched alkanes in the isoreticular metal-organic framework IRMOF-1 have been investigated using Monte Carlo simulation. For pure linear alkanes (C 1-nC 5), the limiting adsorption properties exhibit linear behavior with the alkane carbon number; the long alkane is preferentially adsorbed over the short alkane at low fugacities, whereas the reverse is found at high fugacities. For pure branched alkanes (C 5 isomers), the linear isomer adsorbs more than its branched analogue. The adsorbed amounts of pure alkanes in IRMOF-1 are substantially greater than in a carbon nanotube bundle and in silicalite. For a five-component mixture of C 1 to nC 5 linear alkanes, the long alkane adsorption first increases and then decreases with increasing fugacity, whereas short alkane adsorption continually increases and progressively replaces the long alkane at high fugacity due to the size entropy effect. For a three-component mixture of C 5 isomers, the adsorption of each isomer increases with increasing fugacity until saturation, though there is less adsorption of the branched isomer due to the configurational entropy effect. The adsorption selectivity among the alkanes in IRMOF-1 is smaller than in a carbon nanotube bundle and in silicalite. © 2006 American Chemical Society.
Source Title: Langmuir
URI: http://scholarbank.nus.edu.sg/handle/10635/89497
ISSN: 07437463
DOI: 10.1021/la060506g
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

98
checked on Aug 9, 2018

WEB OF SCIENCETM
Citations

96
checked on Aug 1, 2018

Page view(s)

33
checked on Jul 6, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.