Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.polymer.2009.11.024
Title: Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends
Authors: Luo, Z. 
Jiang, J. 
Keywords: Miscibility
PEO
PVC
Issue Date: 6-Jan-2010
Citation: Luo, Z., Jiang, J. (2010-01-06). Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends. Polymer 51 (1) : 291-299. ScholarBank@NUS Repository. https://doi.org/10.1016/j.polymer.2009.11.024
Abstract: The miscibility of poly(ethylene oxide) (PEO)/poly(vinyl chloride) (PVC) blends are investigated by atomistic molecular dynamics and mesoscale dissipative dynamics simulations. The specific volumes of three PEO/PVC blends (with weight ratio at 70/30, 50/50 and 30/70) as well as pure PEO and PVC are examined as a function of temperature. The glass transition temperatures are estimated to be 251, 268, 280, 313 and 350 K for pure PEO, PEO/PVC 70/30, 50/50, 30/70 and pure PVC. Among different energy contributions, the torsion and van der Waals energies exhibit pronounced kinks versus temperature. The Flory-Huggins parameters determined from the cohesive energy densities and the radial distribution functions of the inter-molecular atoms suggest that PEO/PVC 70/30 and 30/70 blends are more miscible than 50/50 blend. This is further supported by the morphologies of PEO/PVC blends, in which the 50/50 blend exhibits segregated domains implying a weak phase separation. Hydrogen bonds are found to form between O atoms of PEO and H atoms of PVC, with a larger degree in PEO/PVC 70/30 and 30/70 blends than in 50/50 blend. The addition of PVC into PEO suppresses the mobility of PEO chains, which is consistent with the experiment observation of decreased crystallization rate as well as crystallization temperature of PEO. © 2009 Elsevier Ltd. All rights reserved.
Source Title: Polymer
URI: http://scholarbank.nus.edu.sg/handle/10635/89472
ISSN: 00323861
DOI: 10.1016/j.polymer.2009.11.024
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

92
checked on Sep 20, 2018

WEB OF SCIENCETM
Citations

80
checked on Sep 10, 2018

Page view(s)

47
checked on Jun 29, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.