Please use this identifier to cite or link to this item:
Title: Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density
Authors: Zhang, S.
Chung, T.-S. 
Issue Date: 2-Sep-2013
Citation: Zhang, S., Chung, T.-S. (2013-09-02). Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density. Environmental Science and Technology 47 (17) : 10085-10092. ScholarBank@NUS Repository.
Abstract: We have investigated the instant and accumulative effects of salt permeability on the sustainability of high power density in the pressure-retarded osmosis (PRO) process experimentally and theoretically. Thin-film composite (TFC) hollow-fiber membranes were prepared. A critical wall thickness was observed to ensure sufficient mechanical stability and hence a low salt permeability, B. The experimental results revealed that a lower B was essential to enhance the maximum power density from 15.3 W/m2 to as high as 24.3 W/m2 when 1 M NaCl and deionized water were feeds. Modeling work showed that a large B not only causes an instant drop in the initial water flux but also accelerates the flux decline at high hydraulic pressures, leading to reduced optimal operating pressure and maximal power density. However, the optimal operating pressure to harvest energy can be greater than one-half of the osmotic pressure gradient across the membrane if one can carefully design a PRO membrane with a large water permeability, small B value, and reasonably small structural parameter. It was also found that a high B accumulates salts in the feed, leads to the oversalinization of the feed, and largely lowers both the water flux and power density along the membrane module. Therefore, a low salt permeability is highly desirable to sustain high power density not only locally but also throughout the whole module. © 2013 American Chemical Society.
Source Title: Environmental Science and Technology
ISSN: 0013936X
DOI: 10.1021/es402690v
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Sep 18, 2018


checked on Sep 3, 2018

Page view(s)

checked on Jul 27, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.