Please use this identifier to cite or link to this item: https://doi.org/10.1021/ie4009138
Title: Investigation on hydrodynamics of triple-bed combined circulating fluidized bed using electrostatic sensor and electrical capacitance tomography
Authors: Zhang, W.
Cheng, Y. 
Wang, C.
Yang, W.
Wang, C.-H. 
Issue Date: 14-Aug-2013
Citation: Zhang, W., Cheng, Y., Wang, C., Yang, W., Wang, C.-H. (2013-08-14). Investigation on hydrodynamics of triple-bed combined circulating fluidized bed using electrostatic sensor and electrical capacitance tomography. Industrial and Engineering Chemistry Research 52 (32) : 11198-11207. ScholarBank@NUS Repository. https://doi.org/10.1021/ie4009138
Abstract: To investigate the hydrodynamics, a cold model of triple-bed combined circulating fluidized bed (TBCFB) has been built with an electrostatic sensor and a twin-plane electrical capacitance tomography (ECT) sensor. Experimental results show that with the increase in the superficial air velocity, the flow regime in the riser would transit from a dense plug flow to a core-annular flow, and finally to a dilute suspension flow. In the dense plug flow regime, the passage of the solids plugs in the riser can be monitored and the velocity measured using the twin-plane ECT sensor. In the core-annular flow regime, when the solids holdup is moderate, the measured solids velocities by the electrostatic sensor and the ECT sensor are comparable and complementary. With a dilute suspension flow in the riser, a homogeneous flow is observed with a nearly flat velocity profile of solid particles. On the contrary, in the downer the flow becomes inhomogeneous, and the solids velocities in the center of the downer are higher than those near the wall. This study provides a proof-of-concept design to monitor the flow dynamics in the fluidized bed by the combination of electrostatic and ECT sensors over a wide range of flow regimes. © 2013 American Chemical Society.
Source Title: Industrial and Engineering Chemistry Research
URI: http://scholarbank.nus.edu.sg/handle/10635/89290
ISSN: 08885885
DOI: 10.1021/ie4009138
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

23
checked on Jul 18, 2018

WEB OF SCIENCETM
Citations

22
checked on Jun 4, 2018

Page view(s)

52
checked on Jun 22, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.