Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.memsci.2013.04.037
Title: High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation
Authors: Yong, W.F.
Li, F.Y. 
Xiao, Y.C.
Chung, T.S. 
Tong, Y.W. 
Keywords: Gas separation
Hollow fibers
Matrimid
PIM-1
Polymer blends
Issue Date: 15-Sep-2013
Citation: Yong, W.F., Li, F.Y., Xiao, Y.C., Chung, T.S., Tong, Y.W. (2013-09-15). High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. Journal of Membrane Science 443 : 156-169. ScholarBank@NUS Repository. https://doi.org/10.1016/j.memsci.2013.04.037
Abstract: Polymers of intrinsic microporosity (PIM-1) have received worldwide attention but most PIM-1 researches have been conducted on dense flat membranes. For the first time, we have fabricated PIM-1/Matrimid membranes in a useful form of hollow fibers with synergistic separation performance. The newly developed hollow fibers comprising 5-15wt% of highly permeable PIM-1 not only possess much higher gas-pair selectivity than PIM-1 but also have much greater permeance than pure Matrimid fibers. Data from positron annihilation lifetime spectroscopy (PALS), field emission scanning electron microscopy (FESEM) and apparent dense layer thickness indicate that the blend membranes have an ultrathin dense layer thickness of less than 70nm. PIM-1 and Matrimid are partially miscible. The effect of partial miscibility on dense selective layer was studied. Defect-free hollow fibers with gas pair selectivity more than 90% of the intrinsic value can be spun directly from dopes containing 5wt% PIM-1 with proper spinning conditions, while post annealing and additional silicone rubber coating are needed for membranes containing 10 and 15wt% PIM-1, respectively. Comparing to Matrimid, the CO2 permeance of as-spun fibers containing 5 and 10wt% PIM-1 increases 78% and 146%, respectively (e.g., from original 86.3GPU (1GPU=1×10-6cm3 (STP)/cm2scmHg=7.5005×10-12ms-1Pa-1) to 153.4GPU and 212.4GPU) without compromising CO2/CH4 selectivity. The CO2 permeance of the fiber containing 15wt% PIM-1 improves to 243.2GPU with a CO2/CH4 selectivity of 34.3 after silicon rubber coating. Under mixed gas tests of 50/50 CO2/CH4, this fiber shows a CO2 permeance of 188.9GPU and a CO2/CH4 selectivity of 28.8. The same fiber also has an impressive O2 permeance of 3.5 folds higher than the pristine Matrimid (e.g., from original 16.9GPU to 59.9GPU) with an O2/N2 selectivity of 6.1. The newly developed membranes may have great potential to be used for natural gas purification, air separation and CO2 capture. © 2013 Elsevier B.V.
Source Title: Journal of Membrane Science
URI: http://scholarbank.nus.edu.sg/handle/10635/89081
ISSN: 03767388
DOI: 10.1016/j.memsci.2013.04.037
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

45
checked on Jul 13, 2018

WEB OF SCIENCETM
Citations

39
checked on Jun 18, 2018

Page view(s)

48
checked on Jun 14, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.