Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.bbamcr.2013.02.030
Title: Molecular mechanism of transglutaminase-2 in corneal epithelial migration and adhesion
Authors: Tong, L. 
Png, E.
AiHua, H.
Yong, S.S.
Yeo, H.L.
Riau, A.
Mendoz, E.
Chaurasia, S.S.
Lim, C.T. 
Yiu, T.W.
Iismaa, S.E.
Keywords: Adhesion
Cornea
Epithelium
Migration
Transglutaminase
Wound healing
Issue Date: Jun-2013
Source: Tong, L., Png, E., AiHua, H., Yong, S.S., Yeo, H.L., Riau, A., Mendoz, E., Chaurasia, S.S., Lim, C.T., Yiu, T.W., Iismaa, S.E. (2013-06). Molecular mechanism of transglutaminase-2 in corneal epithelial migration and adhesion. Biochimica et Biophysica Acta - Molecular Cell Research 1833 (6) : 1304-1315. ScholarBank@NUS Repository. https://doi.org/10.1016/j.bbamcr.2013.02.030
Abstract: Migration of cells in the ocular surface underpins physiological wound healing as well as many human diseases. Transglutaminase (TG)-2 is a multifunctional cross-linking enzyme involved in the migration of skin fibroblasts and wound healing, however, its functional role in epithelial migration has not been evaluated. This study investigated the importance of TG-2 in a murine corneal wound healing model as well as the mechanistic role of TG-2 in the regulation of related biological processes such as cell adhesion and migration of cultured human corneal epithelial (HCE-T) cells. Corneal wound closure was delayed in homozygous TG-2 deleted mice compared to wild type mice. HCE-T cells that were knocked-down for TG-2 expression through stable expression of a short-hairpin (sh) RNA targeting TG-2, were delayed in closure of scratch wounds (48 compared to 12. h in control cells expressing scrambled shRNA). TG-2 knockdown did not influence epithelial cell cycle progression or proliferation, rather, it led to reduced epithelial cell adhesion, spreading and velocity of migration. At the molecular level, TG-2 knockdown reduced phosphorylation of β-3 integrin at Tyr747, paxillin at Ser178, vinculin at Tyr822 and focal adhesion kinase at Tyr925 simultaneous with reduced activation of Rac and CDC42. Phosphorylation of paxillin at Ser178A has been shown to be indispensable for the migration of corneal epithelial cells (Kimura et al., 2008) [. 18]. TG-2 dependent β-3 integrin activation, serine-phosphorylation of paxillin, and Rac and CDC42 activation may thus play a key functional role in enhancing corneal epithelial cell adhesion and migration during wound healing. © 2013 Elsevier B.V.
Source Title: Biochimica et Biophysica Acta - Molecular Cell Research
URI: http://scholarbank.nus.edu.sg/handle/10635/87938
ISSN: 01674889
DOI: 10.1016/j.bbamcr.2013.02.030
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

6
checked on Feb 20, 2018

WEB OF SCIENCETM
Citations

6
checked on Nov 15, 2017

Page view(s)

37
checked on Feb 16, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.