Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.actamat.2009.05.026
Title: Grain boundary finite length faceting
Authors: Wu, Z.X.
Zhang, Y.W. 
Srolovitz, D.J.
Keywords: Faceting
Grain boundaries
Molecular dynamics simulations
Phase transformations
Issue Date: Aug-2009
Citation: Wu, Z.X., Zhang, Y.W., Srolovitz, D.J. (2009-08). Grain boundary finite length faceting. Acta Materialia 57 (14) : 4278-4287. ScholarBank@NUS Repository. https://doi.org/10.1016/j.actamat.2009.05.026
Abstract: We study symmetrical and asymmetrical aluminium grain boundary faceting with molecular dynamics simulations employing two embedded atom method potentials. Facet formation, coarsening, and the reversible phase transition of ∑ 3 {1 1 0} boundary into ∑ 3 {1 1 2} twin, and vice versa, are demonstrated in the simulations and the results are consistent with earlier experimental studies and theoretical models. The ∑ 11 {0 0 2}1 / {6 6 7}2 boundary shows faceting into {2 2 5}1 / {4 4 1}2 and {6 6 7}1 / {0 0 1}2 boundaries and coarsens with a slower rate when compared to ∑ 3 {1 1 2} facets. However, facets formed by {1 1 1}1 / {1 1 2}2 and {0 0 1}1 / {1 1 0}2 boundaries from a {1 1 6}1 / {6 6 2}2 boundary are stable against finite temperature annealing. In the above faceted boundary, elastic strain energy induced by atomic mismatch across the boundary creates barriers to facet coarsening. Grain boundary tension is too small to stabilize the finite length faceting in both ∑ 3 {1 1 2} twin and asymmetrical {1 1 1}1 / {1 1 2}2 and {0 0 1}1 / {1 1 0}2 facets. The observed finite facet sizes are dictated by facet coarsening kinetics which can be strongly retarded by deep local energy minima associated with atomic matching across the boundary. © 2009 Acta Materialia Inc.
Source Title: Acta Materialia
URI: http://scholarbank.nus.edu.sg/handle/10635/86376
ISSN: 13596454
DOI: 10.1016/j.actamat.2009.05.026
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.