Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.diamond.2011.10.006
Title: Enhanced electron emission from tetrahedral amorphous carbon capped carbon nanotube core-shelled structure
Authors: Yu, J.
Anetab, P.
Koh, A.T.T.
Chua, D.H.C. 
Wei, J.
Keywords: Carbon nanotubes
Core-shell
Electron emission
Thickness
Issue Date: Jan-2012
Citation: Yu, J., Anetab, P., Koh, A.T.T., Chua, D.H.C., Wei, J. (2012-01). Enhanced electron emission from tetrahedral amorphous carbon capped carbon nanotube core-shelled structure. Diamond and Related Materials 21 : 37-41. ScholarBank@NUS Repository. https://doi.org/10.1016/j.diamond.2011.10.006
Abstract: Core-shelled composites have been shown to enhance material properties, notably for chemical sensing and biomolecular applications. In this comprehensive study, we show that a simple core-shell structure, made up of tetrahedral amorphous carbon (ta-C) tip-capped onto an aligned dense array of carbon nanotubes (CNT), exhibits superior electron emission properties, having a distinct enhancement in the turn-on field of < 1 V/μm without any lithography patterning. This is compared to ~ 2 V/μm for pristine CNT samples. A KrF pulsed laser deposition process was used to deposit high (> 70%) sp 3 content non-hydrogenated ta-C films of varying thickness for the tip-capping process. Combining scanning electron microscopy images and electron emission testing results, our systematic study shows that first, the thickness of the ta-C can range from 20 to 100 nm and is sufficient to achieve the enhancement effect. However, thicker coatings > 200 nm will degrade the electron emission. Second, a simple tip-capping is sufficient to achieve the enhancement without the need to encapsulate the entire carbon nanotube. © 2011 Elsevier B.V. All rights reserved.
Source Title: Diamond and Related Materials
URI: http://scholarbank.nus.edu.sg/handle/10635/86301
ISSN: 09259635
DOI: 10.1016/j.diamond.2011.10.006
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Aug 8, 2018

WEB OF SCIENCETM
Citations

2
checked on Aug 1, 2018

Page view(s)

23
checked on Jun 1, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.