Please use this identifier to cite or link to this item: https://doi.org/10.1002/cssc.201300238
Title: Efficient dye-sensitized solar cells using a tetramethylthiourea redox mediator
Authors: Liu, Y.
Jennings, J.R. 
Wang, Q. 
Keywords: dyes/pigments
electrochemistry
energy conversion
redox chemistry
solar cells
Issue Date: Nov-2013
Source: Liu, Y., Jennings, J.R., Wang, Q. (2013-11). Efficient dye-sensitized solar cells using a tetramethylthiourea redox mediator. ChemSusChem 6 (11) : 2124-2131. ScholarBank@NUS Repository. https://doi.org/10.1002/cssc.201300238
Abstract: An organic redox couple tetramethylthiourea/tetramethylformaminium disulfide (TMTU/TMFDS2+) is evaluated in dye-sensitized solar cells in conjunction with a series of indoline and ruthenium-based dyes. Of these, devices with indoline dye D205 show the best performance, with an optimized power conversion efficiency of 7.6 % under AM1.5G 1sun illumination. Charge collection and injection are highly efficient in all TMTU-based DSCs studied. Regeneration of indoline dyes is highly efficient, whereas regeneration of ruthenium dyes by TMTU is less efficient, accounting for their inferior performance. Impedance spectroscopy results reveal that using an optimized TMTU/TMFDS2+ electrolyte solution, the TiO2 conduction band edge is 300-400meV lower than when an optimized I3 -/I- electrolyte is used. The would-be loss in open-circuit voltage caused by the downward conduction band shift is mostly compensated by approximately the 200meV lower redox level of the TMTU/TMFDS 2+ electrolyte and up to 1000 times slower recombination rates. This makes TMTU/TMFDS2+ a promising redox couple in the development of highly efficient solar energy conversion devices. Mediator to dye for! A tetramethylthiourea redox mediator in conjunction with an indoline dye (D205) yields power conversion efficiencies of up to 7.6 % under AM1.5G 1sun illumination when used in dye-sensitized solar cells. This success is attributed to the superior light harvesting, efficient sensitizer regeneration, and fast charge-transfer kinetics at the counter electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: ChemSusChem
URI: http://scholarbank.nus.edu.sg/handle/10635/86284
ISSN: 18645631
DOI: 10.1002/cssc.201300238
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Feb 14, 2018

WEB OF SCIENCETM
Citations

7
checked on Feb 14, 2018

Page view(s)

28
checked on Feb 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.