Please use this identifier to cite or link to this item:
Title: RVE hybrid slim sector model for efficient analysis of solder joint reliability
Authors: Zhao, B.
Tay, A.A.O. 
Issue Date: 2006
Citation: Zhao, B., Tay, A.A.O. (2006). RVE hybrid slim sector model for efficient analysis of solder joint reliability. Proceedings - Electronic Components and Technology Conference 2006 : 740-747. ScholarBank@NUS Repository.
Abstract: With the relentless trend in ever-increasing number of I/Os on packages and the decreasing pitch of interconnects on packages, the task of modeling the fatigue life of the interconnects is becoming evermore challenging. This paper presents a RVE hybrid slim sector model which could be employed to meet the challenge. In this model, almost all the interconnects between chip and substrate are replaced by an equivalent layer except for a few including and around the critical interconnect. The effective mechanical properties of the equivalent continuum layer are evaluated using a 3-D representative volume element (RVE) based on continuum mechanics and a numerical homogenization method. Formulae to extract the effective material constants are derived using elasticity theory. With finite element analysis of four cases of loading to the RVE, a transversely Isotropic plasticity model is developed. Characteristic parameters for Hill's formulation are extracted from the numerical experiments. Temperature dependent mechanical properties are taken into account. A thermomechanical analysis of a 6×6mm 2 flip chip package was carried out the RVE hybrid sum sector model and compared with the detailed one-eight model. The results show that the differences in displacements computed is about 3-5%. Consequently, the error percentage in the maximum inelastic shear strain and fatigue life prediction is about 5% and 9%, respectively. The improvement in efficiency in terms of preprocessing and computational time is enormous. © 2006 IEEE.
Source Title: Proceedings - Electronic Components and Technology Conference
ISBN: 1424401526
ISSN: 05695503
DOI: 10.1109/ECTC.2006.1645740
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 11, 2019

Page view(s)

checked on Jan 12, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.