Please use this identifier to cite or link to this item:
Title: Rate-dependent properties of Sn-Ag-Cu based lead free solder joints
Authors: Su, Y.
Tan, L.B.
Tan, V.B.C. 
Tee, T.Y.
Issue Date: 2009
Citation: Su, Y., Tan, L.B., Tan, V.B.C., Tee, T.Y. (2009). Rate-dependent properties of Sn-Ag-Cu based lead free solder joints. Proceedings of the Electronic Packaging Technology Conference, EPTC : 283-291. ScholarBank@NUS Repository.
Abstract: The increasing demand for portable electronics has led to the shrinking in size of electronic components and solder joint dimensions. The industry also made a transition towards the adoption of lead-free solder alloys, commonly based around the Sn-Ag-Cu alloys. As knowledge of the processes and operational reliability of these lead-free solder joints (used especially in advanced packages) is limited, it has become a major concern to characterise the mechanical performance of these interconnects amid the greater push for greener electronics by the European Union. In this study, solder joint array shear and tensile tests were conducted on wafer-level chip scale package (WLCSP) specimens of different solder alloy materials, SAC 105 (Sn-1%wt Ag-0.5%wt Cu) and SAC 405 (Sn-4%wt Ag-0.5%wt Cu) under two test rates of 0.5 mm/s (2.27 s-1) and 5 mm/s (22.73 s-1). These WLCSP packages have an array of 12x12 solder bumps (300μm in diameter); and double redistribution layers with a Ti/Cu/Ni/Au under-bump metallurgy (UBM) as their silicon-based interface structure. Good mechanical performance of package pull-tests at high strain rates is often correlated to a higher percentage of bulk solder failures than interface failures in solder joints. The solder joint array tests show that for higher test rates and Ag content, there are less bulk solder failures and more interface failures. Correspondingly, the average solder joint strength and peak load also decrease under higher test rate and Ag content. The solder joint results relate closely to the higher rate-sensitivity of SAC 405 in gaining material strength which might prove detrimental to solder joint interfaces that are less rate sensitive. In addition, specimens under shear yielded more bulk solder failures, higher average solder joint strength and ductility than specimens under tension. ©2009 IEEE.
Source Title: Proceedings of the Electronic Packaging Technology Conference, EPTC
ISBN: 9781424451005
DOI: 10.1109/EPTC.2009.5416537
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 16, 2019


checked on Jan 16, 2019

Page view(s)

checked on Dec 28, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.