Please use this identifier to cite or link to this item: https://doi.org/10.1117/12.849797
Title: Nanostructured electrode materials for Li-ion battery
Authors: Balaya, P. 
Saravanan, K. 
Hariharan, S.
Keywords: anode
cathode
high rate performance
lithium storage
Nano-size effect
soft-template approach
solvothermal synthesis
Issue Date: 2010
Citation: Balaya, P., Saravanan, K., Hariharan, S. (2010). Nanostructured electrode materials for Li-ion battery. Proceedings of SPIE - The International Society for Optical Engineering 7683 : -. ScholarBank@NUS Repository. https://doi.org/10.1117/12.849797
Abstract: Nanostructured materials have triggered a great excitement in recent times due to both fundamental interest as well as technological impact relevant for lithium ion batteries (LIBs). Size reduction in nanocrystals leads to a variety of unexpected exciting phenomena due to enhanced surface-to-volume ratio and reduced transport length. We will consider a few examples of nanostructured electrode materials in the context of lithium batteries for achieving high storage and high rate performances: 1) LiFePO4 nanoplates synthesized using solvothermal method could store Li-ions comparable to its theoretical capacity at C/10, while at 30C, they exhibit storage capacity up to 45 mAh/g. Size reduction (~30 nm) at the b-axis favors the fast Li-ion diffusion. In addition to this, uniform ~5 nm carbon coating throughout the plates provides excellent electronically conducting path for electrons. This nano architecture enables fast insertion/extraction of both Li-ions as well as electrons; 2) Mesporous-TiO2 with high surface area (135m2/g) synthesized using soft-template method exhibits high volumetric density compared to commercial nanopowder (P25), with excellent Li-storage behavior. C16 meso-TiO2 synthesized from CTAB exhibits reversible storage capacity of 288mAh/g at 0.2C and 109 mAh/g at 30C; 3) Zero strain Li4Ti 5O12 anode material has been synthesized using several wet chemical routes. The best condition has been optimized to achieve storage capability close to theoretical limit of 175mAh/g at C/10. At 10C, we could retain lithium storage up to 88 mAh/g; 4) We report our recent results on α-Fe2O3 and γ-Fe2O3 using conversion reaction, providing insight for a better storage capability in γ-phase than the α-phase at 2C resulting solely from the nanocrystallinity. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Source Title: Proceedings of SPIE - The International Society for Optical Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/86038
ISBN: 9780819481474
ISSN: 0277786X
DOI: 10.1117/12.849797
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

21
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.