Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.actbio.2014.02.030
Title: Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model
Authors: Kai, D.
Wang, Q.-L.
Wang, H.-J.
Prabhakaran, M.P. 
Zhang, Y.
Tan, Y.-Z.
Ramakrishna, S. 
Keywords: Cardiac patch
Electrospun nanofibers
Improvement of cardiac function
Mesenchymal stem cells
Myocardial infarction
Issue Date: 2014
Citation: Kai, D., Wang, Q.-L., Wang, H.-J., Prabhakaran, M.P., Zhang, Y., Tan, Y.-Z., Ramakrishna, S. (2014). Stem cell-loaded nanofibrous patch promotes the regeneration of infarcted myocardium with functional improvement in rat model. Acta Biomaterialia 10 (6) : 2727-2738. ScholarBank@NUS Repository. https://doi.org/10.1016/j.actbio.2014.02.030
Abstract: Myocardial infarction (MI) leads to the loss of cardiomyocytes, followed by left ventricular (LV) remodeling and cardiac dysfunction. The authors hypothesize that an elastic, biodegradable nanofibrous cardiac patch loaded with mesenchymal stem cells (MSC) could restrain LV remodeling and improve cardiac function after MI. Poly(ε-caprolactone)/gelatin (PG) nanofibers were fabricated by electrospinning, and the nanofibers displayed a porous and uniform nanofibrous structure with a diameter of 244 ± 51 nm. An MI model was established by ligation of the left anterior descending coronary artery of female Sprague-Dawley rats. The PG nanofibrous patch seeded with MSC, isolated from rat bone marrow, was implanted on the epicardium of the infarcted region of the LV wall of the heart. After transplantation, the PG-cell patch restricted the expansion of the LV wall effectively and reduced the scar size, and the density of the microvessels increased. Cells within the patch were able to migrate towards the scar tissue, and promoted new blood vessel formation at the infarct site. Angiogenesis and the cardiac functions improved significantly after 4 weeks of implantation. The MSC-seeded PG nanofibrous patches are demonstrated to provide sufficient mechanical support, to induce angiogenesis and to accelerate cardiac repair in a rat model of MI. The study highlights the positive impact of implantation of an MSC-seeded PG nanofibrous patch as a novel constituent for MI repair. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Source Title: Acta Biomaterialia
URI: http://scholarbank.nus.edu.sg/handle/10635/85659
ISSN: 18787568
DOI: 10.1016/j.actbio.2014.02.030
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

37
checked on Sep 12, 2018

WEB OF SCIENCETM
Citations

36
checked on Sep 12, 2018

Page view(s)

67
checked on Aug 17, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.