Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.clinbiomech.2005.11.001
Title: Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone
Authors: Teo, J.C.M. 
Si-Hoe, K.M.
Keh, J.E.L.
Teoh, S.H. 
Keywords: Bone mechanical properties
Bone micro-architecture
Cancellous bone
Micro-CT
Porcine bone
Issue Date: Mar-2006
Citation: Teo, J.C.M., Si-Hoe, K.M., Keh, J.E.L., Teoh, S.H. (2006-03). Relationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone. Clinical Biomechanics 21 (3) : 235-244. ScholarBank@NUS Repository. https://doi.org/10.1016/j.clinbiomech.2005.11.001
Abstract: Background. In vivo assessment of bone density is insufficient for the evaluation of osteoporosis in patients. A more complete diagnostic tool for the determination of bone quality is needed. Micro-computed tomography imaging allows a non-destructive method for evaluating cancellous bone micro-architecture. However, lengthened exposure to ionizing radiation prevents patients to be imaged by such a system. The aim for this study was to elucidate the relationships between image intensity (of Hounsfield units), cancellous bone micro-architecture and mechanical properties. Methods. Using pig vertebral cancellous bone, the bone specimens were imaged using clinical and micro-computed tomography scanners and subsequently subjected to uniaxial compression testing. Results. Results indicate that micro-architecture can be predicted using clinical image intensity. Micro-architectural parameters relevant to osteoporosis study, such as percent bone volume, trabecular bone pattern factor, structure model index, trabecular thickness and trabecular separation have shown significant correlation with R2 values of 0.83, 0.80, 0.70, 0.72, and 0.54, respectively, when correlated to Hounsfield units. In addition, the correlation of mechanical properties (E, σ yield, and σult) in the superior-inferior direction (the primary loading direction), to micro-architecture parameters has also been good (R2 > 0.5) for all except tissue volume, tissue surface and degree of anisotropy. Interpretation. This proves that the predictive power of bone strength and stiffness was improved with the combination of bone density and micro-architecture information. This work supports the prediction of micro-architecture using current clinical computed tomography imaging technology. © 2005 Elsevier Ltd. All rights reserved.
Source Title: Clinical Biomechanics
URI: http://scholarbank.nus.edu.sg/handle/10635/85599
ISSN: 02680033
DOI: 10.1016/j.clinbiomech.2005.11.001
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

85
checked on Jul 14, 2018

WEB OF SCIENCETM
Citations

74
checked on Jun 20, 2018

Page view(s)

33
checked on Jul 6, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.