Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.jmatprotec.2007.04.019
Title: Nanocrystalline grain size control for Ni80Fe20/Cu micro-composite wires by different electrodeposition methods
Authors: Seet, H.L. 
Li, X.P. 
Lee, K.S. 
Chia, H.Y.
Keywords: Electrodeposition
Nanocrystalline grain size
Permalloy
Pulse-reverse
Issue Date: 1-Oct-2007
Source: Seet, H.L., Li, X.P., Lee, K.S., Chia, H.Y. (2007-10-01). Nanocrystalline grain size control for Ni80Fe20/Cu micro-composite wires by different electrodeposition methods. Journal of Materials Processing Technology 192-193 : 225-228. ScholarBank@NUS Repository. https://doi.org/10.1016/j.jmatprotec.2007.04.019
Abstract: In the development of high sensitivity bio-magnetic field sensors, extremely high permeability magnetic materials are essential as sensing elements. Materials composition, nanocrystalline grain size, uniformity and thickness are the key factors affecting the permeability of the magnetic materials. According to the random anisotropy model (RAM), magnetic properties can be drastically improved when the grain size is decreased below the critical magnetic interaction exchange length, which was calculated to be 270 nm for Ni80Fe20. Pulse-reverse electrodeposited and pulse electrodeposited Ni80Fe20 have been reported to possess extremely good magnetic properties. Pulse-reversed specimens were predicted to possess much better magnetic properties due to improved uniformity, arising from the presence of an anodic current. In this study, a layer of Ni80Fe20 was deposited onto 20 μm diameter Cu wires using pulse-reverse electrodeposition. The composition of the deposited layer was fixed constant by the manipulation of Ni2+ and Fe2+ ions while the thickness was controlled to be similar by the manipulation of the deposition time. The nanocrystalline grain sizes of the specimens were characterized using XRD and compared to those from dc electrodeposition and pulse electrodeposition. Results showed that the nanocrystalline grain sizes of specimens produced by pulse-reverse electrodeposition was the largest, followed by those from dc electrodeposition and then pulse electrodeposition. However, with the introduction of an off-time period to the pulse-reverse current waveform, the average grain size of the resulting deposited material was found to decrease. The magneto-impedance effect of the specimens from pulse reverse electrodeposition with off-time was found to be higher than those from pulse reverse electrodeposition without off-time. © 2007 Elsevier B.V. All rights reserved.
Source Title: Journal of Materials Processing Technology
URI: http://scholarbank.nus.edu.sg/handle/10635/85451
ISSN: 09240136
DOI: 10.1016/j.jmatprotec.2007.04.019
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

1
checked on Feb 21, 2018

WEB OF SCIENCETM
Citations

1
checked on Jan 15, 2018

Page view(s)

23
checked on Feb 18, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.