Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3699214
DC FieldValue
dc.titleIn-situ nanoscale mapping of surface potential in all-solid-state thin film Li-ion battery using Kelvin probe force microscopy
dc.contributor.authorZhu, J.
dc.contributor.authorZeng, K.
dc.contributor.authorLu, L.
dc.date.accessioned2014-10-07T09:06:41Z
dc.date.available2014-10-07T09:06:41Z
dc.date.issued2012-03-15
dc.identifier.citationZhu, J., Zeng, K., Lu, L. (2012-03-15). In-situ nanoscale mapping of surface potential in all-solid-state thin film Li-ion battery using Kelvin probe force microscopy. Journal of Applied Physics 111 (6) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3699214
dc.identifier.issn00218979
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/85325
dc.description.abstractThis paper presents an in-situ study by combining contact dc-writing in biased scanning probe microscopy and non-contact Kelvin probe force microscopy to characterize the effect of bias-induced Li insertion/extraction on the changes of surface potential of TiO 2 anode in an all-solid-state thin film Li-ion battery at nanoscale. With single layer TiO 2 film as the reference, the factors affecting the changes of the surface potential, including the Fermi energy level shift and charge screening related to TiO 2 semiconductor behavior, and bias-induced Li intercalation/ de-intercalation related to battery behavior are investigated. Surface potential hysteresis loop can be formed for TiO 2 anode film, in which the potential value increases under the positive polarization and decreases under the negative polarization. In addition, TiO 2 anode film after Li insertion/extraction cycles has a lower surface potential, indicating the decrease of charge sustaining capacity and the surface electrical degradation. In addition, surface potential barriers (pits) after the positive (negative) polarization have been also observed, which is mainly attributed to the different electrical properties and charge accumulation at grain boundaries. © 2012 American Institute of Physics.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1063/1.3699214
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1063/1.3699214
dc.description.sourcetitleJournal of Applied Physics
dc.description.volume111
dc.description.issue6
dc.description.page-
dc.description.codenJAPIA
dc.identifier.isiut000302221700070
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.