Please use this identifier to cite or link to this item: https://doi.org/10.1109/ISIT.2006.261951
Title: Simple tight exponential bounds on the first-order Marcum Q-function via the geometric approach
Authors: Kam, P.Y. 
Li, R. 
Issue Date: 2006
Citation: Kam, P.Y., Li, R. (2006). Simple tight exponential bounds on the first-order Marcum Q-function via the geometric approach. IEEE International Symposium on Information Theory - Proceedings : 1085-1089. ScholarBank@NUS Repository. https://doi.org/10.1109/ISIT.2006.261951
Abstract: The geometric interpretation of the first-order Marcum Q-function, Q(a, b), has been shown as the probability that a complex, Gaussian random variable Z̃ with real, nonzero mean a takes on values outside of a circular region CO,b of radius b centered at the origin O. Based on this interpretation, many new, simple, tight, upper/lower exponential bounds on Q(a, b) are easily obtained by computing the probability of Z lying outside of some simple geometrical shapes, such as circular regions, semicircular regions, sectors, and angular sectors of annuli, whose boundaries tightly enclose, or are tightly enclosed by the boundary of CO,b. The new bounds presented here only involve two exponential functions, and the best of them are in most cases much tighter than the best existing exponential bounds. In addition to these bounds, more new bounds can be obtained by using similar methods. Even some bounds in the literature can also be obtained via this geometric approach. ©2006 IEEE.
Source Title: IEEE International Symposium on Information Theory - Proceedings
URI: http://scholarbank.nus.edu.sg/handle/10635/84184
ISBN: 1424405041
ISSN: 21578101
DOI: 10.1109/ISIT.2006.261951
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

10
checked on Sep 18, 2018

WEB OF SCIENCETM
Citations

2
checked on Sep 3, 2018

Page view(s)

27
checked on Sep 21, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.