Please use this identifier to cite or link to this item: https://doi.org/10.1109/ISLPED.2013.6629317
Title: Robustness-driven energy-efficient ultra-low voltage standard cell design with intra-cell mixed-Vt methodology
Authors: Zhao, W.
Ha, Y. 
Hoo, C.H.
Alvarez, A.B.
Keywords: Intra-cell mixed-Vt
multi-Vt design
standard cell library
subthreshold circuits
yield enhancement
Issue Date: 2013
Source: Zhao, W.,Ha, Y.,Hoo, C.H.,Alvarez, A.B. (2013). Robustness-driven energy-efficient ultra-low voltage standard cell design with intra-cell mixed-Vt methodology. Proceedings of the International Symposium on Low Power Electronics and Design : 323-328. ScholarBank@NUS Repository. https://doi.org/10.1109/ISLPED.2013.6629317
Abstract: High functional yield is one of the key challenges for subthreshold standard cell designs. Device upsizing is a commonly used but suboptimal method due to its overheads in energy and area. In this paper, we propose a robustness-driven intra-cell mixed-Vt design methodology (MVT-ULV) for the robust ultra-low voltage operation. It uses low threshold voltage transistors in the weak pulling network of logic gates to enhance the robustness. It guarantees the high functional yield with the minimum energy/area overheads. We demonstrate on a commercial 65nm CMOS process that, our proposed design methodology shows up to 60mV and 110mV robustness improvement at 300mV power supply voltage over the commercial library cells and the cells built with previous Leakage-Minimization mixed-Vt methods (MVT-LM) under the same cell area constraints, respectively. In addition, the proposed MVT-ULV library enables ITC'99 benchmark circuits to show on average 30.1% and 78.1% energy-efficiency improvement when compared to the libraries built with the device-upsizing methods and the previous MVT-LM methods under the same yield constraints, respectively. © 2013 IEEE.
Source Title: Proceedings of the International Symposium on Low Power Electronics and Design
URI: http://scholarbank.nus.edu.sg/handle/10635/84149
ISBN: 9781479912353
ISSN: 15334678
DOI: 10.1109/ISLPED.2013.6629317
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Feb 20, 2018

Page view(s)

25
checked on Feb 22, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.