Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICCA.2011.6138097
Title: Real coded GA-based SVM for motor imagery classification in a Brain-Computer Interface
Authors: Bamdadian, A.
Guan, C.
Ang, K.K.
Xu, J. 
Issue Date: 2011
Source: Bamdadian, A.,Guan, C.,Ang, K.K.,Xu, J. (2011). Real coded GA-based SVM for motor imagery classification in a Brain-Computer Interface. IEEE International Conference on Control and Automation, ICCA : 1355-1359. ScholarBank@NUS Repository. https://doi.org/10.1109/ICCA.2011.6138097
Abstract: The brain signals are generally measured by Electroencephalogram (EEG) in Brain-Computer Interface (BCI) applications. In motor imagery-based BCI, the performed MI tasks (e.g., imagined hand movement) are identified through a classification algorithm to communicate and control the device. Consequently, improving the performance of the classifier is crucial to the success of the BCI system. One of the most popular linear classifier in BCI applications is the Support Vector Machine (SVM). This paper improves the performance of MI-based BCI by finding the optimum free kernel parameters of the SVM classifier. A real-coded genetic algorithm is utilized to determine the free kernel parameters of the SVM. The performance of this method is evaluated using publicly available BCI Competition IV dataset IIa for right and left hand motor imagery tasks. The results show that using real-valued GA-based SVM with Polynomial or Gaussian kernel improves the average accuracy over nine subjects compared with the baseline (i.e., the grid search method). Hence, using automated method (GA) helps us in improving the performance of the MI-based BCI especially for subjects with poor performance. © 2011 IEEE.
Source Title: IEEE International Conference on Control and Automation, ICCA
URI: http://scholarbank.nus.edu.sg/handle/10635/84126
ISBN: 9781457714757
ISSN: 19483449
DOI: 10.1109/ICCA.2011.6138097
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Mar 7, 2018

Page view(s)

18
checked on Apr 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.