Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0167-9317(03)00050-9
Title: Effects of rapid thermal annealing time and ambient temperature on the charge storage capability of SiO2/pure Ge/rapid thermal oxide memory structure
Authors: Heng, C.L.
Teo, L.W.
Ho, V.
Tay, M.S.
Lei, Y.
Choi, W.K. 
Chim, W.K. 
Keywords: Charge storage
Ge nanocrystals
Rapid thermal annealing
Issue Date: Apr-2003
Citation: Heng, C.L., Teo, L.W., Ho, V., Tay, M.S., Lei, Y., Choi, W.K., Chim, W.K. (2003-04). Effects of rapid thermal annealing time and ambient temperature on the charge storage capability of SiO2/pure Ge/rapid thermal oxide memory structure. Microelectronic Engineering 66 (1-4) : 218-223. ScholarBank@NUS Repository. https://doi.org/10.1016/S0167-9317(03)00050-9
Abstract: A metal-insulator-semiconductor device with a tri-layer structure consisting of sputtered silicon dioxide (SiO2) (∼ 50 nm)-evaporated pure germanium (Ge) (2.3 nm)-rapid thermal oxidation (RTO) oxide (5 nm) was fabricated on a p-type silicon (Si) substrate. This structure was rapid thermal annealed at 1000 °C in argon. For the as-prepared structure and those that were annealed from 10 to 400 s, it was observed that the hysteresis of the capacitance versus voltage (C-V) curves increased from ∼ 1.5 to 10 V. This indicated that the charge storage capability of the structure improved with increasing annealing time. From our transmission electron microscope results, we observed that as the annealing time increased, more Ge nanocrystals were formed. When the ambient temperature was increased from 25 to 150 °C, the width of the hysteresis of our devices reduced. The charge storage mechanism of the Ge nanocrystals was explained in terms of charging/discharging from traps at the internal/surface of Ge nanocrystals and tunneling of charges to the interface states at the Si-RTO oxide interface. © Elsevier Science B.V. All rights reserved.
Source Title: Microelectronic Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/83684
ISSN: 01679317
DOI: 10.1016/S0167-9317(03)00050-9
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

19
checked on Jul 16, 2018

WEB OF SCIENCETM
Citations

14
checked on Jun 20, 2018

Page view(s)

21
checked on Feb 26, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.