Please use this identifier to cite or link to this item: https://doi.org/10.1109/IPGC.2008.4781305
Title: A resonator-based silicon electro-optic modulator with ultra-low power consumption and optimized modulation performance
Authors: Xin, M.
Danner, A.J. 
Png, C.E.
Lim, S.T.
Issue Date: 2008
Citation: Xin, M.,Danner, A.J.,Png, C.E.,Lim, S.T. (2008). A resonator-based silicon electro-optic modulator with ultra-low power consumption and optimized modulation performance. 2008 IEEE PhotonicsGlobal at Singapore, IPGC 2008 : -. ScholarBank@NUS Repository. https://doi.org/10.1109/IPGC.2008.4781305
Abstract: This paper demonstrates, via simulation, an electro-optic modulator based on a subwavelength Fabry-Perot resonator cavity with ultra-low power consumption. The device is modulated at a doped p-i-n junction overlapping the cavity in a silicon waveguide perforated with etched holes, with the doping area optimized for minimum power consumption. The surface area of the entire device is only 2.1 μm2. Our optical and electrical simulations demonstrate a resonance peak shift of 12 nm with 0.5 mW power consumption. Transient results indicate that the modulation depth exceeds 10 dB at a modulation speed of 100 MHz with the power consumption comparing favorably to a previous report [1]. This speed can be further improved to 250 MHz by using an optimized driving signal [2]. Finally, the etched holes forming the cavity have been tapered [3], [4] to maximize insertion, and the etching depth of those holes is tuned to reduce fabrication complexity. The device does not rely on ultra-high Q, and the huge peak shift detected could be applied to a sensor [5]-[7], modulator, or passive filter with built-in calibration.
Source Title: 2008 IEEE PhotonicsGlobal at Singapore, IPGC 2008
URI: http://scholarbank.nus.edu.sg/handle/10635/83417
ISBN: 9781424429059
DOI: 10.1109/IPGC.2008.4781305
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

22
checked on Sep 21, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.