Please use this identifier to cite or link to this item: https://doi.org/10.1109/TED.2013.2255057
Title: Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: A common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS
Authors: Gong, X.
Han, G. 
Liu, B.
Wang, L.
Wang, W.
Yang, Y.
Kong, E.Y.-J.
Su, S.
Xue, C.
Cheng, B.
Yeo, Y.-C. 
Keywords: GeSn pMOSFET
InGaAs nMOSFET
Si2H6 passivation
Issue Date: 2013
Citation: Gong, X., Han, G., Liu, B., Wang, L., Wang, W., Yang, Y., Kong, E.Y.-J., Su, S., Xue, C., Cheng, B., Yeo, Y.-C. (2013). Sub-400 °C Si2H6 passivation, HfO2 gate dielectric, and single TaN metal gate: A common gate stack technology for In0.7Ga0.3As and Ge1-xSnx CMOS. IEEE Transactions on Electron Devices 60 (5) : 1640-1648. ScholarBank@NUS Repository. https://doi.org/10.1109/TED.2013.2255057
Abstract: We report a novel common gate-stack solution for In0.7Ga 0.3As n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs) and Ge0.97Sn0.03 p-channel metaloxide- semiconductor field-effect transistors (pMOSFETs), featuring sub-400 °C Si2H6 passivation, sub-1.75-nm capacitance equivalent thickness (CET), and single TaN metal gate. By incorporating Si 2H6 passivation, an ultrathin SiO2/Si interfacial layer is formed between the high-k gate dielectric and the high mobility InGaAs and GeSn channels. The In0.7Ga0.3As nMOSFET and Ge0.97Sn0.03 pMOSFET show drive currents of ∼143 and ∼69μA/μm, respectively, at |VDS| and |V GS - VTH| of 1V for a gate length LG of 4μm. At an inversion carrier density Ninv of 1013 cm -2, In0.7Ga0.3As nMOSFETs and Ge 0.97Sn0.03 pMOSFETs show electron and hole mobilities of ∼495 and ∼230cm2/V·s, respectively. At Ninv of 4 × 1012 cm-2, electron and hole mobility values of ∼705 and ∼ 346cm2/V·s are achieved. Symmetric VTH is realized by choosing a metal gate with midgap work function, and CET of less than 1.75nm is demonstrated with a gate-leakage current density (JG) of less than 10-4A/cm2 at a gate bias of VTH ±1V. Using this gate-stack, a Ge0.95Sn 0.05 pMOSFET with the shortest LG of 200nm is also realized. Drive current of ∼680μA/μm is achieved at VDS of -1.5V and VGS - VTH of -2V, with peak intrinsic transconductance Gm,int of ∼492μS/μm at VDS of -1.1V. © 2013 IEEE.
Source Title: IEEE Transactions on Electron Devices
URI: http://scholarbank.nus.edu.sg/handle/10635/83109
ISSN: 00189383
DOI: 10.1109/TED.2013.2255057
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

20
checked on Sep 18, 2018

WEB OF SCIENCETM
Citations

17
checked on Sep 3, 2018

Page view(s)

48
checked on Aug 17, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.