Please use this identifier to cite or link to this item: https://doi.org/10.1063/1.3504653
Title: On the nuclear magnetic resonance frequency of phosphorus donor atom in a silicon-based quantum computer
Authors: Mirzaei, H.
Hui, H.T. 
Issue Date: 1-Nov-2010
Source: Mirzaei, H., Hui, H.T. (2010-11-01). On the nuclear magnetic resonance frequency of phosphorus donor atom in a silicon-based quantum computer. Journal of Applied Physics 108 (9) : -. ScholarBank@NUS Repository. https://doi.org/10.1063/1.3504653
Abstract: The nuclear magnetic resonance (NMR) frequency of a single qubit structure of Kane's solid-state quantum computer is investigated by using the perturbation theory. With higher-order excited states (up to 3d modes) included in our calculation, the perturbation frequencies and energies are obtained numerically. To compute for arbitrary A gate geometries, the perturbation potential inside the qubit structure is determined through an electromagnetic simulation method. Calculations show that the potential distributions for realistic A gate geometries are far from linear ones. Our results show that the A gate voltage has a much more effective control over the NMR frequency of the phosphorus nucleus than that previously shown. Using our method, arbitrary A gate structures of any shapes or geometries can be engineered for the realization of a solid-state scalable quantum computer. We also investigate an alternative A gate structure using SiGe as the insulation barrier. Our study shows that this A gate structure offers a much more efficient utilization of the control voltage than the original A gate structure using SiO2 as the insulation barrier. © 2010 American Institute of Physics.
Source Title: Journal of Applied Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/82816
ISSN: 00218979
DOI: 10.1063/1.3504653
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Feb 14, 2018

WEB OF SCIENCETM
Citations

3
checked on Jan 23, 2018

Page view(s)

15
checked on Feb 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.