Please use this identifier to cite or link to this item: https://doi.org/10.1109/TIP.2008.2010210
Title: Mode-kn factor analysis for image ensembles
Authors: Yan, S. 
Wang, H.
Tu, J.
Tang, X.
Huang, T.S.
Keywords: Factor analysis
Multilinear analysis
Pose estimation
Tensor representation
Issue Date: 2009
Citation: Yan, S., Wang, H., Tu, J., Tang, X., Huang, T.S. (2009). Mode-kn factor analysis for image ensembles. IEEE Transactions on Image Processing 18 (3) : 670-676. ScholarBank@NUS Repository. https://doi.org/10.1109/TIP.2008.2010210
Abstract: In this corespondence, we study the extra-factor estimation problem with the assumption that the training image ensemble is expressed as an nth-order tensor with the nth-dimension characterizing all features for an image and other dimensions for different extra factors, such as illuminations, poses, and identities. To overcome the local minimum issue of conventional algorithms designed for this problem, we present a novel statistical learning framework called mode-kn Factor Analysis for obtaining a closed-form solution to estimating the extra factors of any test image. In the learning stage, for the kth (k ≠ n) dimension of the data tensor, the mode-kn patterns are constructed by concatenating the feature dimension and the kth extra-factor dimension, and then a mode-kn factor analysis model is learnt based on the mode-kn patterns unfolded from the original data tensor. In the inference stage, for a test image, the mode classification of the kth dimension is performed within a probabilistic framework. The advantages of mode-kn factor analysis over conventional tensor analysis algorithms are twofold: 1) a closed-form solution, instead of iterative sub-optimal solution as conventionally, is derived for estimating the extra-factor mode of any test image; and 2) the classification capability is enhanced by interacting with the process of synthesizing data of all other modes in the kth dimension. Experiments on the Pointing'04 and CMU PIE databases for pose and illumination estimation both validate the superiority of the proposed algorithm over conventional algorithms for extra-factor estimation. © 2009 IEEE.
Source Title: IEEE Transactions on Image Processing
URI: http://scholarbank.nus.edu.sg/handle/10635/82707
ISSN: 10577149
DOI: 10.1109/TIP.2008.2010210
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on Sep 20, 2018

WEB OF SCIENCETM
Citations

3
checked on Sep 4, 2018

Page view(s)

27
checked on Aug 3, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.