Please use this identifier to cite or link to this item:
Title: Elastic and nonlinear response of nanomechanical graphene devices
Authors: Annamalai, M.
Mathew, S. 
Jamali, M.
Zhan, D.
Palaniapan, M. 
Issue Date: Oct-2012
Citation: Annamalai, M., Mathew, S., Jamali, M., Zhan, D., Palaniapan, M. (2012-10). Elastic and nonlinear response of nanomechanical graphene devices. Journal of Micromechanics and Microengineering 22 (10) : -. ScholarBank@NUS Repository.
Abstract: In this paper, a simple and effective experimental approach has been used to extract the mechanical properties of suspended nanomechanical graphene devices using atomic force microscopy (AFM). The main objective of this work is to study the deflection behaviour of graphene devices as a function of layer number (1-5 layers) and anchor geometry which has not been widely investigated so far. Elastic and nonlinear responses of the devices were obtained using AFM nanoindentation. The estimated linear (2.5N m -1to 7.3N m -1), nonlinear spring constants (1×10 14N m -3to 15×10 14N m -3) and pretension (0.79N m -1to 2.3N m -1) for the monolayer (3.35 Å) to five layer (16.75 Å) graphene devices of diameter 3.8μm show an obvious increasing trend with increase in graphene thickness. The effect of anchor geometry on the force versus deflection behaviour of these devices has also been investigated. The Raman spectroscopy results confirm the absence of defects in the pristine and indented devices. Using the continuum mechanics model, the Young's modulus and 2D elastic modulus of a monolayer graphene device have been found to be 1.12 TPa and 375N m -1respectively. The high stiffness and low mass of these devices make them well suited for sensing applications. © 2012 IOP Publishing Ltd.
Source Title: Journal of Micromechanics and Microengineering
ISSN: 09601317
DOI: 10.1088/0960-1317/22/10/105024
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Mar 20, 2019


checked on Mar 5, 2019

Page view(s)

checked on Mar 16, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.