Please use this identifier to cite or link to this item: https://doi.org/10.1038/srep04624
DC FieldValue
dc.titleChiral tunneling modulated by a time-periodic potential on the surface states of a topological insulator
dc.contributor.authorLi, Y.
dc.contributor.authorJalil, M.B.A.
dc.contributor.authorTan, S.G.
dc.contributor.authorZhao, W.
dc.contributor.authorBai, R.
dc.contributor.authorZhou, G.H.
dc.date.accessioned2014-10-07T04:24:51Z
dc.date.available2014-10-07T04:24:51Z
dc.date.issued2014-04-09
dc.identifier.citationLi, Y., Jalil, M.B.A., Tan, S.G., Zhao, W., Bai, R., Zhou, G.H. (2014-04-09). Chiral tunneling modulated by a time-periodic potential on the surface states of a topological insulator. Scientific Reports 4 : -. ScholarBank@NUS Repository. https://doi.org/10.1038/srep04624
dc.identifier.issn20452322
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/82055
dc.description.abstractTime-periodic perturbation can be used to modify the transport properties of the surface states of topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we study the tunneling transmission of the surface states of a topological insulator under the influence of a time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for electrons which are injected normally into the time-periodic potential region in the absence of any bias voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the transmission probability of normally incident electrons decreasing with increasing gate bias voltage. Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied. The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the presence or absence of the gate bias voltage.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1038/srep04624
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1038/srep04624
dc.description.sourcetitleScientific Reports
dc.description.volume4
dc.description.page-
dc.identifier.isiut000333964000001
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.