Please use this identifier to cite or link to this item:
Title: Self-learning neurofuzzy control of a liquid helium cryostat
Authors: Tan, W.W. 
Dexter, A.L.
Keywords: Adaptive neurofuzzy control on-line training
Issue Date: Oct-1999
Source: Tan, W.W.,Dexter, A.L. (1999-10). Self-learning neurofuzzy control of a liquid helium cryostat. Control Engineering Practice 7 (10) : 1209-1220. ScholarBank@NUS Repository.
Abstract: The paper demonstrates that a self-learning neurofuzzy controller is able to regulate the temperature in a liquid helium cryostat. In order to simplify the task of commissioning the controller, a strategy for choosing the user-selected parameters from an equivalent proportional-plus-integral controller (PI) is derived. Experimental results which illustrate the potential of the proposed control scheme are presented. The performance of the self-learning neurofuzzy controller is also compared with that of a commercial gain-scheduled PI controller.
Source Title: Control Engineering Practice
ISSN: 09670661
DOI: 10.1016/S0967-0661(99)00096-9
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Jan 17, 2018

Page view(s)

checked on Jan 14, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.