Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/80371
Title: Effects of changing Al mole fraction on the performance of an InGaAlAs/InP DBRTD
Authors: Lim, C.H.
Chua, S.J. 
Karunasiri, G. 
Issue Date: 1998
Source: Lim, C.H.,Chua, S.J.,Karunasiri, G. (1998). Effects of changing Al mole fraction on the performance of an InGaAlAs/InP DBRTD. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE : 37-41. ScholarBank@NUS Repository.
Abstract: The effects of changing the InAlGaAs alloy composition in the contact, barrier and well layers of a DBRTD, lattice-matched to InP substrate, on the transmission curves and the PVCD have been studied. A simple RTD model, in which the applied bias is assumed to drop across the double barrier region, is used in the simulation. The Airy function formalism is used to solve the Schrodinger equation in the structure and the transfer matrix method is used to calculate the transmission coefficient, which is then used to calculate the Tsu and Esaki tunneling current. It is found that among all the structures studied, RTD with In0.52Al0.48As barriers and In0.52Al0.48As well and contact has the best performance.
Source Title: IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE
URI: http://scholarbank.nus.edu.sg/handle/10635/80371
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

30
checked on Feb 16, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.