Please use this identifier to cite or link to this item: https://doi.org/10.1089/scd.2007.0088
Title: Human embryonic stem cells may display higher resistance to genotoxic stress as compared to primary explanted somatic cells
Authors: Vinoth, K.J. 
Heng, B.C. 
Poonepalli, A. 
Banerjee, B.
Balakrishnan, L.
Lu, K.
Hande, M.P.
Cao, T. 
Issue Date: 1-Jun-2008
Citation: Vinoth, K.J., Heng, B.C., Poonepalli, A., Banerjee, B., Balakrishnan, L., Lu, K., Hande, M.P., Cao, T. (2008-06-01). Human embryonic stem cells may display higher resistance to genotoxic stress as compared to primary explanted somatic cells. Stem Cells and Development 17 (3) : 599-607. ScholarBank@NUS Repository. https://doi.org/10.1089/scd.2007.0088
Abstract: The use of human embryonic stem (hES) cells in genotoxicity screening can potentially overcome the deficiencies associated with using immortalized cell lines, primary explanted somatic cells, and live animal models. Hence this study sought to compare the responses of hES cells and primary explanted somatic cells (IMR-90 cells, human fetal lung fibroblasts) to genotoxic stress, to evaluate whether hES cells can accurately reflect the normal physiology of human somatic cells. The effects of mitomycin C (MMC) on the chromosomal stability of hESC and IMR-90 was assayed and compared by fluorescence in situ hybridization (FISH) with telomere-specific peptide nucleic acid and multicolor (m) FISH techniques. The results showed that, the percentage of aberrant cells increased from 6% in the untreated control to 57.5% at the higher dose of 0.06 μg/ml MMC (9.6-fold increase) group in the case of IMR-90 cells, whereas hES cells displayed a corresponding increase from 6% to 28% (4.6-fold increase). Telomere FISH ascertained that the main types of damage induced by MMC are chromosomal breaks and the loss of telomeric signals. No fusions were observed in all samples analyzed. This was further confirmed by mFISH, which showed that fusions and translocations were not the type of aberration induced by MMC, with no such aberrations being observed in all samples analyzed. Hence, hES cells of the H1 line are apparently more resistant to MMC-induced DNA damage, as compared to the IMR-90 cells. These results highlight possible intrinsic differences in response to damaging agents between hES cells and normal somatic cells. © Mary Ann Liebert, Inc. 2008.
Source Title: Stem Cells and Development
URI: http://scholarbank.nus.edu.sg/handle/10635/79969
ISSN: 15473287
DOI: 10.1089/scd.2007.0088
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

19
checked on Sep 21, 2018

WEB OF SCIENCETM
Citations

18
checked on Sep 11, 2018

Page view(s)

64
checked on Aug 31, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.