Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/78186
Title: Improved temporal relation classification using dependency parses and selective crowdsourced annotations
Authors: Ng, J.P.
Kan, M.Y. 
Keywords: Clause structure
Convolution kernels
Crowdsourcing
Dependency parsing
Information extraction
Temporal relations
Issue Date: 2012
Citation: Ng, J.P.,Kan, M.Y. (2012). Improved temporal relation classification using dependency parses and selective crowdsourced annotations. 24th International Conference on Computational Linguistics - Proceedings of COLING 2012: Technical Papers : 2109-2124. ScholarBank@NUS Repository.
Abstract: We study the problem of classifying the temporal relationship between events and time expressions in text. In contrast to previous methods that require extensive feature engineering, our approach is simple, relying only on a measure of parse tree similarity. Our method generates such tree similarity values using dependency parses as input to a convolution kernel. The resulting system outperforms the current state-of-the-art. To further improve classifier performance, we can obtain more annotated data. Rather than rely on expert annotation, we assess the feasibility of acquiring annotations through crowdsourcing. We show that quality temporal relationship annotation can be crowdsourced from novices. By leveraging the problem structure of temporal relation classification, we can selectively acquire annotations on problem instances that we assess as more difficult. Employing this annotation strategy allows us to achieve a classification accuracy of 73.2%, a statistically significant improvement of 8.6% over the previous state-of-the-art, while trimming annotation efforts by up to 37%. Finally, as we believe that access to sufficient training data is a significant barrier to current temporal relationship classification, we plan to share our collected data with the research community to promote benchmarking and comparative studies. © 2012 The COLING.
Source Title: 24th International Conference on Computational Linguistics - Proceedings of COLING 2012: Technical Papers
URI: http://scholarbank.nus.edu.sg/handle/10635/78186
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

29
checked on Jul 6, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.