Please use this identifier to cite or link to this item: https://doi.org/10.1109/TVCG.2013.82
Title: Automatic paper sliceform design from 3D solid models
Authors: Le-Nguyen, T.-V.
Low, K.-L. 
Ruiz, C.
Le, S.N. 
Keywords: computer art
lattice pop-up
paper scaffold
Paper sliceform
papercraft
shape abstraction
Issue Date: 2013
Citation: Le-Nguyen, T.-V., Low, K.-L., Ruiz, C., Le, S.N. (2013). Automatic paper sliceform design from 3D solid models. IEEE Transactions on Visualization and Computer Graphics 19 (11) : 1795-1807. ScholarBank@NUS Repository. https://doi.org/10.1109/TVCG.2013.82
Abstract: A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms. © 2013 IEEE.
Source Title: IEEE Transactions on Visualization and Computer Graphics
URI: http://scholarbank.nus.edu.sg/handle/10635/77826
ISSN: 10772626
DOI: 10.1109/TVCG.2013.82
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

9
checked on Oct 16, 2018

WEB OF SCIENCETM
Citations

5
checked on Oct 8, 2018

Page view(s)

33
checked on Jun 29, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.