Please use this identifier to cite or link to this item: https://doi.org/10.2174/092986709789760706
Title: Expanding the chemical biologist's tool kit: Chemical labelling strategies and its applications
Authors: Chattopadhaya, S.
Abu Bakar, F.B. 
Yao, S.Q. 
Issue Date: 2009
Source: Chattopadhaya, S., Abu Bakar, F.B., Yao, S.Q. (2009). Expanding the chemical biologist's tool kit: Chemical labelling strategies and its applications. Current Medicinal Chemistry 16 (34) : 4527-4543. ScholarBank@NUS Repository. https://doi.org/10.2174/092986709789760706
Abstract: Methods that allow visualisation of proteins in living systems, in real time have been key to our understanding of the molecular underpinnings of life. Although the use of genetically encoded fusions to fluorescent proteins have greatly advanced such studies, the large size of these tags and their ability to perturb protein activity have been major limitations. Attempts to circumvent these issues have seen the genesis of complementary strategies to chemically label/modify proteins. Chemical labelling approaches seek to "decorate" biomolecules in live cells through the site-specific introduction of a small, non-native chemical tag (or reporter group). The introduced tag is minimally invasive such that the activity and/or function of the target molecule in not perturbed/compromised by its inclusion. In most cases, this modification is brought about by fusing target biomolecules to protein domains/ peptide tags or via the incorporation of reactive "handles" by either exploiting the cell's biosynthetic machinery or during protein synthesis. Selective tagging of the biomolecule then proceeds via a bioorthogonal chemical reaction following exogenous addition of probe(s). Depending on the nature of the probe, the method can be applied to either visualise/track the dynamics of target molecule(s) in their native cellular milieu or for affinity enrichment for further downstream applications. The versatility of these approaches has been demonstrated by their ability to tag not just proteins but also intractable biomolecules like glycans. In this review, we summarise the various strategies available to "chemically" tag protein, glycans and provide a comparative analysis their advantages and disadvantages. We also highlight the many creative applications of such methodologies and discuss their future prospects. © 2009 Bentham Science Publishers Ltd.
Source Title: Current Medicinal Chemistry
URI: http://scholarbank.nus.edu.sg/handle/10635/77605
ISSN: 09298673
DOI: 10.2174/092986709789760706
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

22
checked on Feb 15, 2018

WEB OF SCIENCETM
Citations

19
checked on Jan 30, 2018

Page view(s)

25
checked on Feb 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.