Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevB.75.245301
Title: Adsorption of molecular oxygen on the walls of pristine and carbon-doped (5,5) boron nitride nanotubes: Spin-polarized density functional study
Authors: Zhang, J.
Loh, K.P. 
Zheng, J.
Sullivan, M.B.
Wu, P.
Issue Date: 5-Jun-2007
Citation: Zhang, J., Loh, K.P., Zheng, J., Sullivan, M.B., Wu, P. (2007-06-05). Adsorption of molecular oxygen on the walls of pristine and carbon-doped (5,5) boron nitride nanotubes: Spin-polarized density functional study. Physical Review B - Condensed Matter and Materials Physics 75 (24) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevB.75.245301
Abstract: We performed ab initio calculations to study the effect of molecular oxygen adsorption on the electronic properties of (5,5) pristine and carbon-doped boron nitride (BN) nanotube. The binding energies of oxygen molecules physisorbed at different sites were determined by considering both short- and long-range interactions. Spin-polarized calculation within the density functional theory yielded the triplet ground state for oxygen physisorbed on pure BN nanotube; the large energy gap between the unoccupied oxygen levels and the top of the valence band indicates the absence of hole doping. The introduction of substitutional carbon impurity increases the reactivity of BN nanotube toward molecular oxygen and stable O2 chemisorption states exist on both carbon-substituted nitrogen site (CN) and carbon-substituted boron site (CB) defect sites. Chemisorbed O2 on the CN defect is found to impart metallicity on the BN nanotube. © 2007 The American Physical Society.
Source Title: Physical Review B - Condensed Matter and Materials Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/75532
ISSN: 10980121
DOI: 10.1103/PhysRevB.75.245301
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

51
checked on Oct 12, 2018

WEB OF SCIENCETM
Citations

49
checked on Oct 3, 2018

Page view(s)

51
checked on Oct 5, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.