Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/75291
DC FieldValue
dc.titleImplementation of organic bottom anti-reflective coating in 0.35 μm polycide fabrication
dc.contributor.authorKo, T.-M.
dc.contributor.authorFan, M.-H.
dc.contributor.authorCheng, A.
dc.contributor.authorYu, R.
dc.date.accessioned2014-06-19T09:49:30Z
dc.date.available2014-06-19T09:49:30Z
dc.date.issued1997
dc.identifier.citationKo, T.-M., Fan, M.-H., Cheng, A., Yu, R. (1997). Implementation of organic bottom anti-reflective coating in 0.35 μm polycide fabrication. Proceedings of SPIE - The International Society for Optical Engineering 3183 : 207-217. ScholarBank@NUS Repository.
dc.identifier.issn0277786X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/75291
dc.description.abstractIn the development of i-line 0.35 μm technology, the reflection from the poly-Si substrates become so severe that notching was observed in all the areas with larger than 2000 A ̊topological difference during the lithographical masking. As a result, microtrench.es and poor electrical characteristics were obtained after etching. By applying 1520 Å of organic bottom anti-reflective coating (organic BARC), the reflection from the substrates was greatly reduced from 50% to less than 5%. Consequently, the design rules developed for i-line 0.35 fim technology could be preserved without microtrench formation. The organic BARC also provided additional advantages of planarizing the different topological features on the substrates. And, its etching rate was about the same as the photoresists. The exposure energy and usable depth of focus latitudes were slightly improved with the application of organic BARC. There were basically no differences in masking linearity and iso-dense bias when comparing the critical dimensions of the photoresists with or without applying the organic BARC. The experimental data agreed with the computer simulation data very well. Furthermore, thickness uniformity and reflectivity uniformity across the wafer and from wafer to wafer were very good and were acceptable to the manufacturing environment. Defect density induced by the additional step of coating the organic BARC was very low. Therefore, the implementation of organic BARC was relatively simple and was essential to reduce the notching produced by substrate reflection in the critical layers of the 0.35 μm devices.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1117/12.280541
dc.sourceScopus
dc.subjectComputer simulation
dc.subjectMasking linearity
dc.subjectNotching
dc.subjectOff-axis mumination
dc.subjectOptical proximity effect
dc.subjectOrganic barc
dc.subjectPhotoresist
dc.subjectPolycide
dc.subjectReflectivity
dc.typeConference Paper
dc.contributor.departmentCHEMICAL ENGINEERING
dc.description.sourcetitleProceedings of SPIE - The International Society for Optical Engineering
dc.description.volume3183
dc.description.page207-217
dc.description.codenPSISD
dc.identifier.isiutA1997BJ57L00022
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.