Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICIEA.2009.5138477
Title: Nonlinear model predictive control of a multistage evaporator system using recurrent neural networks
Authors: Atuonwu, J.C.
Cao, Y.
Rangaiah, G.P. 
Tadé, M.O.
Keywords: Automatic differentiation
Multiple-effect evaporators
Nonlinear model predictive control
Nonlinear system identification
Recurrent neural networks
Issue Date: 2009
Source: Atuonwu, J.C.,Cao, Y.,Rangaiah, G.P.,Tadé, M.O. (2009). Nonlinear model predictive control of a multistage evaporator system using recurrent neural networks. 2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009 : 1662-1667. ScholarBank@NUS Repository. https://doi.org/10.1109/ICIEA.2009.5138477
Abstract: The use of multistage evaporators, motivated by the energy economy from reusing the flashed steam is common in a wide range of process industries. Such evaporators however present several control problems which manifest in the form of strong interactions among the many process variables, significant dead times, tendency to open-loop instability and severe nonlinearities. In this paper, a nonlinear model predictive control (NMPC) scheme utilizing a proportional-integral (PI) controller in its inner loop is developed for a simulated industrial-scale five-stage evaporator using a continuous-time recurrent neural network in state space as its internal model. Input-output data obtained from closed-loop system identification experiments are used in training the network by the Levenberg-Marquardt algorithm with automatic differentiation. A similar approach is used in developing an optimal control law for the plant based on the model predictions. The effectiveness of this scheme is tested by simulating various control problem scenarios involving set-point tracking and disturbance rejection and comparing performance with that of decentralized PI controllers developed earlier. Results show significant improvements in control performance, particularly in terms of settling time. © 2009 IEEE.
Source Title: 2009 4th IEEE Conference on Industrial Electronics and Applications, ICIEA 2009
URI: http://scholarbank.nus.edu.sg/handle/10635/74683
ISBN: 9781424428007
DOI: 10.1109/ICIEA.2009.5138477
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Dec 18, 2017

Page view(s)

21
checked on Dec 16, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.