Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/74433
Title: A Bayesian approach for integrating transcription regulation and gene expression: Application to saccharomyces cerevisiae cell cycle data
Authors: Jonnalagadda, S.
Srinivasan, R. 
Issue Date: 2007
Source: Jonnalagadda, S.,Srinivasan, R. (2007). A Bayesian approach for integrating transcription regulation and gene expression: Application to saccharomyces cerevisiae cell cycle data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4023 LNBI : 178-187. ScholarBank@NUS Repository.
Abstract: The advent of high-throughput techniques is transforming biology into a data rich field. A variety of genomics data is now available, each providing a different perspective of gene regulation. Even though each type of data requires specific computational methods, methods that combine complimentary datasets are necessary to obtain additional information that is not available by analyzing the either of the dataset alone. In this paper, we propose a Bayesian approach to integrate gene expression data with genome-wide protein-DNA interaction data. The proposed method combines these datasets in order to probabilistic predict transcription factors for genes. We evaluate the proposed method using Saccharomyces Cerevisiae Cell Cycle data. Results are compared with that of previous method. © Springer-Verlag Berlin Heidelberg 2007.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/74433
ISBN: 3540482938
ISSN: 03029743
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

35
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.