Please use this identifier to cite or link to this item: https://doi.org/10.1142/S0217984909018862
Title: The transient deformation of red blood cells in shear flow
Authors: Low, H.T. 
Sui, Y. 
Chew, Y.T. 
Roy, P. 
Keywords: Cell deformation
Immersed boundary method
Lattice Boltzmann method
Issue Date: 30-Jan-2009
Source: Low, H.T.,Sui, Y.,Chew, Y.T.,Roy, P. (2009-01-30). The transient deformation of red blood cells in shear flow. Modern Physics Letters B 23 (3) : 545-548. ScholarBank@NUS Repository. https://doi.org/10.1142/S0217984909018862
Abstract: The transient deformation of red blood cells (RBCs) in a shear flow is studied by a three-dimensional numerical model proposed by the present authors. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to be the same to the fluid outside. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the present results show that the cells carry out a swinging motion, in which periodic inclination-oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion. © 2009 World Scientific Publishing Company.
Source Title: Modern Physics Letters B
URI: http://scholarbank.nus.edu.sg/handle/10635/73950
ISSN: 02179849
DOI: 10.1142/S0217984909018862
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Dec 12, 2017

Page view(s)

40
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.