Please use this identifier to cite or link to this item: https://doi.org/10.1109/ACC.1998.694631
Title: Neural-based adaptive control design for general nonlinear systems and its application to process Control
Authors: Ge, S.S. 
Hang, C.C. 
Zhang, T.
Issue Date: 1998
Source: Ge, S.S.,Hang, C.C.,Zhang, T. (1998). Neural-based adaptive control design for general nonlinear systems and its application to process Control. Proceedings of the American Control Conference 1 : 73-77. ScholarBank@NUS Repository. https://doi.org/10.1109/ACC.1998.694631
Abstract: In this work, a neural-based adaptive controller is presented to solve the tracking control problem for a general class of unknown nonlinear systems. The proposed controller ensures that the output tracking error converges to a small neighborhood of the origin. The weight updating law of neural networks (NNs) is derived using Lyapunov theory and the stability of the closed-loop system is guaranteed. The proposed control scheme has been successfully applied to the composition control in a continuously stirred tank reactor (CSTR) in chemical processes. © 1998 AACC.
Source Title: Proceedings of the American Control Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/72778
ISBN: 0780345304
ISSN: 07431619
DOI: 10.1109/ACC.1998.694631
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

10
checked on Jan 9, 2018

Page view(s)

20
checked on Jan 11, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.