Please use this identifier to cite or link to this item: https://doi.org/10.1109/WSC.2011.6148092
Title: The sample average approximation method for multi-objective stochastic optimization
Authors: Kim, S. 
Ryu, J.-H. 
Issue Date: 2011
Source: Kim, S.,Ryu, J.-H. (2011). The sample average approximation method for multi-objective stochastic optimization. Proceedings - Winter Simulation Conference : 4021-4032. ScholarBank@NUS Repository. https://doi.org/10.1109/WSC.2011.6148092
Abstract: In this paper, we consider black-box problems where the analytic forms of the objective functions are not available, and the values can only be estimated by output responses from computationally expensive simulations. We apply the sample average approximation method to multi-objective stochastic optimization problems and prove the convergence properties of the method under a set of fairly general regularity conditions. We develop a new algorithm, based on the trust-region method, for approximating the Pareto front of a bi-objective stochastic optimization problem. At each iteration of the proposed algorithm, a trust region is identified and quadratic approximate functions for the expected objective functions are built using sample average values. To determine non-dominated solutions in the trust region, a single-objective optimization problem is constructed based on the approximate objective functions. After updating the set of non-dominated solutions, a new trust region around the most isolated point is determined to explore areas that have not been visited. The numerical results show that our proposed method is feasible, and the performance can be significantly improved with an appropriate sample size. © 2011 IEEE.
Source Title: Proceedings - Winter Simulation Conference
URI: http://scholarbank.nus.edu.sg/handle/10635/72421
ISBN: 9781457721083
ISSN: 08917736
DOI: 10.1109/WSC.2011.6148092
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

3
checked on Dec 13, 2017

Page view(s)

42
checked on Dec 16, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.