Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/71837
Title: Speaker State Classification based on fusion of asymmetric SIMPLS and Support Vector Machines
Authors: Huang, D.-Y.
Sam Ge, S. 
Zhang, Z.
Keywords: Asymmetric SIMPLS
Fusion
Intoxication
Sleepiness
Speaker state challenge
SVMs
Issue Date: 2011
Source: Huang, D.-Y.,Sam Ge, S.,Zhang, Z. (2011). Speaker State Classification based on fusion of asymmetric SIMPLS and Support Vector Machines. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH : 3301-3304. ScholarBank@NUS Repository.
Abstract: This paper describes a Speaker State Classification System (SSCS) for the INTERSPEECH 2011 Speaker State Challenge. Our SSC system for the Intoxication and Sleepiness Sub-Challenges uses fusion of several individual sub-systems. We make use of three standard feature sets per corpus given by organizers. Modeling is based on our own developed classification method - Asymmetric simple partial least squares (ASIMPLS) and Support Vector Machines (SVMs), followed by the calibration and multiple fusion methods. The advantage of asymmetric SIMPLS is prone to protect the minority class from being misclassified and boosts the performance on the majority class. Our experimental results show that our SSC system performs better than baseline system. Our final fusion results in 1:8% absolute improvement on the unweighted accuracy value for the Alcohol Language Corpus (ALC) and about 0:7% for the Sleepy Language Corpus (SLC) on the development set over the baseline. On the test set, we obtain 1:1% and 1:4% absolute improvement, respectively. Copyright © 2011 ISCA.
Source Title: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
URI: http://scholarbank.nus.edu.sg/handle/10635/71837
ISSN: 19909772
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

43
checked on Mar 9, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.