Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-15558-1_54
Title: Randomized locality sensitive vocabularies for bag-of-features model
Authors: Mu, Y. 
Sun, J. 
Han, T.X.
Cheong, L.-F. 
Yan, S. 
Issue Date: 2010
Source: Mu, Y.,Sun, J.,Han, T.X.,Cheong, L.-F.,Yan, S. (2010). Randomized locality sensitive vocabularies for bag-of-features model. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6313 LNCS (PART 3) : 748-761. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-15558-1_54
Abstract: Visual vocabulary construction is an integral part of the popular Bag-of-Features (BOF) model. When visual data scale up (in terms of the dimensionality of features or/and the number of samples), most existing algorithms (e.g. k-means) become unfavorable due to the prohibitive time and space requirements. In this paper we propose the random locality sensitive vocabulary (RLSV) scheme towards efficient visual vocabulary construction in such scenarios. Integrating ideas from the Locality Sensitive Hashing (LSH) and the Random Forest (RF), RLSV generates and aggregates multiple visual vocabularies based on random projections, without taking clustering or training efforts. This simple scheme demonstrates superior time and space efficiency over prior methods, in both theory and practice, while often achieving comparable or even better performances. Besides, extensions to supervised and kernelized vocabulary constructions are also discussed and experimented with. © 2010 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/71544
ISBN: 364215557X
ISSN: 03029743
DOI: 10.1007/978-3-642-15558-1_54
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

16
checked on Dec 5, 2017

Page view(s)

33
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.