Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/71508
Title: Probability hypothesis density approach for multi-camera multi-object tracking
Authors: Pham, N.T.
Huang, W.
Ong, S.H. 
Issue Date: 2007
Source: Pham, N.T.,Huang, W.,Ong, S.H. (2007). Probability hypothesis density approach for multi-camera multi-object tracking. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4843 LNCS (PART 1) : 875-884. ScholarBank@NUS Repository.
Abstract: Object tracking with multiple cameras is more efficient than tracking with one camera. In this paper, we propose a multiple-camera multiple-object tracking system that can track 3D object locations even when objects are occluded at cameras. Our system tracks objects and fuses data from multiple cameras by using the probability hypothesis density filter. This method avoids data association between observations and states of objects, and tracks multiple objects in single-object state space. Hence, it has lower computation than methods using joint state space. Moreover, our system can track varying number of objects. The results demonstrate that our method has a high reliability when tracking 3D locations of objects. © Springer-Verlag Berlin Heidelberg 2007.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/71508
ISBN: 9783540763857
ISSN: 03029743
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

9
checked on Dec 9, 2017

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.