Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-33709-3_13
Title: Order-preserving sparse coding for sequence classification
Authors: Ni, B.
Moulin, P.
Yan, S. 
Issue Date: 2012
Source: Ni, B.,Moulin, P.,Yan, S. (2012). Order-preserving sparse coding for sequence classification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7573 LNCS (PART 2) : 173-187. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-33709-3_13
Abstract: In this paper, we investigate order-preserving sparse coding for classifying multi-dimensional sequence data. Such a problem is often tackled by first decomposing the input sequence into individual frames and extracting features, then performing sparse coding or other processing for each frame based feature vector independently, and finally aggregating individual responses to classify the input sequence. However, this heuristic approach ignores the underlying temporal order of the input sequence frames, which in turn results in suboptimal discriminative capability. In this work, we introduce a temporal-order-preserving regularizer which aims to preserve the temporal order of the reconstruction coefficients. An efficient Nesterov-type smooth approximation method is developed for optimization of the new regularization criterion, with guaranteed error bounds. Extensive experiments for time series classification on a synthetic dataset, several machine learning benchmarks, and a challenging real-world RGB-D human activity dataset, show that the proposed coding scheme is discriminative and robust, and it outperforms previous art for sequence classification. © 2012 Springer-Verlag.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/71335
ISBN: 9783642337086
ISSN: 03029743
DOI: 10.1007/978-3-642-33709-3_13
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

23
checked on Dec 11, 2017

Page view(s)

59
checked on Dec 16, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.