Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-540-85988-8_92
Title: Nonrigid registration of dynamic renal MR images using a saliency based MRF model
Authors: Mahapatra, D.
Sun, Y. 
Issue Date: 2008
Source: Mahapatra, D.,Sun, Y. (2008). Nonrigid registration of dynamic renal MR images using a saliency based MRF model. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5241 LNCS (PART 1) : 771-779. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-540-85988-8_92
Abstract: Nonrigid registration of contrast-enhanced MR images is a difficult problem due to the change in pixel intensity caused by the wash-in and wash-out of the contrast agent. In this paper we propose a novel saliency based Markov Random Field approach for effective nonrigid registration of contrast enhanced images. Saliency information obtained from the neurobiology-based saliency model alongwith intensity information is used to quantify the degree of similarity between images in the pre- and post-contrast stages. Information from these two features is combined by using an exponential function of the saliency difference such that it assigns low values to small differences in saliency and at the same time ensures that saliency information does not bias the energy term. Rotationally-invariant edge information from edge-orientation histograms was used to complement the saliency information resulting in better registration results. Tests on real patient datasets show that our algorithm results in accurate registration. We also simulated elastic motion on images, and the deformation field recovered by our algorithm was nearly the inverse of the simulated field. © 2008 Springer-Verlag Berlin Heidelberg.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/71165
ISBN: 354085987X
ISSN: 03029743
DOI: 10.1007/978-3-540-85988-8_92
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on Dec 13, 2017

Page view(s)

36
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.