Please use this identifier to cite or link to this item: https://doi.org/10.1109/CVPR.2008.4587665
Title: Non-negative graph embedding
Authors: Yang, J.
Yang, S. 
Fu, Y.
Li, X.
Huang, T.
Issue Date: 2008
Source: Yang, J.,Yang, S.,Fu, Y.,Li, X.,Huang, T. (2008). Non-negative graph embedding. 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR : -. ScholarBank@NUS Repository. https://doi.org/10.1109/CVPR.2008.4587665
Abstract: We introduce a general formulation, called non-negative graph embedding, for non-negative data decomposition by integrating the characteristics of both intrinsic and penalty graphs [17]. In the past, such a decomposition was obtained mostly in an unsupervised manner, such as Non-negative Matrix Factorization (NMF) and its variants, and hence unnecessary to be powerful at classification. In this work, the non-negative data decomposition is studied in a unified way applicable for both unsupervised and supervised/semi-supervised configurations. The ultimate data decomposition is separated into two parts, which separatively preserve the similarities measured by the intrinsic and penalty graphs, and together minimize the data reconstruction error. An iterative procedure is derived for such a purpose, and the algorithmic non-negativity is guaranteed by the non-negative property of the inverse of any M-matrix. Extensive experiments compared with NMF and conventional solutions for graph embedding demonstrate the algorithmic properties in sparsity, classification power, and robustness to image occlusions. ©2008 IEEE.
Source Title: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
URI: http://scholarbank.nus.edu.sg/handle/10635/71161
ISBN: 9781424422432
DOI: 10.1109/CVPR.2008.4587665
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

70
checked on Dec 5, 2017

Page view(s)

25
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.