Please use this identifier to cite or link to this item: http://scholarbank.nus.edu.sg/handle/10635/70651
Title: Internal model approach for gait modeling and classification
Authors: Xu, J.-X. 
Wang, W.
Goh, J.C.H. 
Lee, G.
Issue Date: 2005
Source: Xu, J.-X.,Wang, W.,Goh, J.C.H.,Lee, G. (2005). Internal model approach for gait modeling and classification. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 7 VOLS : 7688-7691. ScholarBank@NUS Repository.
Abstract: In this paper, we present a novel approach to model and classify gait patterns based on internal models. An internal model consists of two sets of differential equations and a neural network in between. It can effectively describe dynamic movement primitives (DMP), hence is able to model the temporal-spatial gait patterns. An interesting feature of the internal model is, the nonlinear map generated by the neural network can also serve the purpose for gait pattern classification. In this work we use a single hidden layer feed-forward network (SLFN), and show that the characteristics of gait patterns can be captured via the output layer weights. The experiment results based on EMGs of gait patterns at five different walking speeds are used to validate the internal model approach. © 2005 IEEE.
Source Title: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
URI: http://scholarbank.nus.edu.sg/handle/10635/70651
ISBN: 0780387406
ISSN: 05891019
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

49
checked on Jan 14, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.