Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICIF.2007.4408177
Title: Gaussian mixture probability hypothesis density for visual people tracking
Authors: Wang, Y.-D.
Wu, J.-K.
Huang, W.
Kassim, A.A. 
Keywords: Bayesian filtering
Gaussian mixture
People tracking
Probability hypothesis density
Issue Date: 2007
Source: Wang, Y.-D.,Wu, J.-K.,Huang, W.,Kassim, A.A. (2007). Gaussian mixture probability hypothesis density for visual people tracking. FUSION 2007 - 2007 10th International Conference on Information Fusion : -. ScholarBank@NUS Repository. https://doi.org/10.1109/ICIF.2007.4408177
Abstract: This paper presents our work which involves the application of a recursive Bayesian filter, the Gaussian mixture probability hypothesis density (GMPHD) filter, to a visual tracking problem. Foreground objects are detected using statistical background modeling to obtain measurements which are input into the filter. The GMPHD filter explicitly models the birth, survival and death of objects by managing the number of Gaussian components and jointly estimates the time-varying number of objects and their states. A scene-driven method is proposed to initialize the GMPHD filter and model the birth of new objects. The results shows when a person or a group appeared, merged, split, and disappeared in the field of view, the GMPHD filter can track the number and positions at the most time. The scene-driven GMPHD filter can track the birth of new objects faster than the particle PHD filter.
Source Title: FUSION 2007 - 2007 10th International Conference on Information Fusion
URI: http://scholarbank.nus.edu.sg/handle/10635/70409
ISBN: 0662478304
DOI: 10.1109/ICIF.2007.4408177
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

16
checked on Dec 13, 2017

Page view(s)

32
checked on Dec 9, 2017

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.