Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICCA.2010.5524339
Title: Data-driven approaches in health condition monitoring - A comparative study
Authors: Geramifard, O.
Xu, J.-X. 
Pang, C.K. 
Zhou, J.H.
Li, X.
Issue Date: 2010
Source: Geramifard, O.,Xu, J.-X.,Pang, C.K.,Zhou, J.H.,Li, X. (2010). Data-driven approaches in health condition monitoring - A comparative study. 2010 8th IEEE International Conference on Control and Automation, ICCA 2010 : 1618-1622. ScholarBank@NUS Repository. https://doi.org/10.1109/ICCA.2010.5524339
Abstract: In this paper, four data-driven classification approaches, that is, K-nearest neighbors (K-NN), self-organizing map (SOM), multi-layer perceptron (MLP), and Bayesian Network classifier (BNC), are applied to a health condition monitoring problem for the wearing cutter. The dataset is produced from a cutting machine using force sensing. A genetic algorithm (GA) based search is performed to select 3 dominant features from a 16-dimensional feature space, which is computed directly from the real dataset. Subsequently K-NN, SOM, MLP, and BNC algorithms are trained to predict the wearing status of the cutter, respectively. The suitability of the four data-driven approaches for the health condition monitoring are investigated and compared. © 2010 IEEE.
Source Title: 2010 8th IEEE International Conference on Control and Automation, ICCA 2010
URI: http://scholarbank.nus.edu.sg/handle/10635/69778
ISBN: 9781424451951
DOI: 10.1109/ICCA.2010.5524339
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

20
checked on Jan 17, 2018

Page view(s)

24
checked on Jan 14, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.